NONREGULAR ULTRAFILTERS ON ω_2

SEAN COX

Abstract. We obtain lower bounds for the consistency strength of fully nonregular ultrafilters on ω_2.

1. Introduction

A nonregular ultrafilter is a notion which arose from classic questions in model theory about cardinalities of ultrapowers (see Chang and Keisler [1]). Nonregularity is a weakening of countable completeness, and allows for the possibility of a small ultrapower: if an ultrafilter U on ω_1 has the property that $|\omega_1 \omega/U| = \omega_1$, then U must be nonregular.

Although in ZFC there is never a countably complete ultrafilter over a cardinal like ω_n, it is consistent relative to large cardinals that there is a nonregular ultrafilter on ω_n ($n \geq 1$). An upper bound for the consistency strength of the existence of a nonregular ultrafilter on ω_1 is ω many Woodin cardinals (see Woodin [13]). Laver [12] showed that if there is an ω_1-dense uniform ideal on ω_1 and ♦ holds, then there is a nonregular ultrafilter on ω_1. Huberich [9] removed the assumption of ♦.

The known consistency upper bound for a fully nonregular ultrafilter on ω_2 is higher. Foreman, Magidor, and Shelah [8] obtained such an ultrafilter from an almost huge cardinal. Foreman [7] obtains such an ultrafilter U from a huge cardinal, with many additional properties including the small ultrapower property which appears in part 2 of Theorem 1 below.1

Ketonen [11] proved that if there is a nonregular ultrafilter on ω_1, then 0^\sharp exists. This was later improved by Donder, Jensen, and Koppelberg [5], and then by Deiser and Donder [6]. Deiser and Donder

1Foreman’s model actually satisfied $|\omega_2 \omega/U| = \omega_1$, which is stronger than the condition appearing in the hypothesis of Theorem 1.
showed that the consistency strength is at least a stationary limit of measurables. In fact, their proof can be slightly modified to show: if there is a nonregular ultrafilter on \(\omega_1 \) then either 0-sword exists or else
\[
\{ \nu < \omega_2 | \text{cf}(\nu) = \omega_1 \text{ and } \nu \text{ is measurable in } K \}
\]
contains an \(\omega_1 \)-club in \(V \).\(^2\) In either case, there is an inner model \(M \) such that \(V \) sees an \(\omega_1 \)-club through \(M \)'s measurables below \(\omega_2 \).

We build on their argument to obtain lower consistency bounds for fully nonregular ultrafilters on \(\omega_2 \):

Theorem 1. Suppose there is a fully nonregular ultrafilter \(U \) on \(\omega_2 \). Then:

1. There is an inner model with a cardinal \(\kappa \) of Mitchell order \(\kappa^+ \). In particular, if 0-pistol does not exist, then letting \(\kappa = \omega_3^V \), the Mitchell order of \(\kappa \) in the core model \(K \) is at least \(\kappa^+ \).
2. If \(\omega_1/U = \omega_2 \), then there are mice extenders with multiple generators (the consistency strength of this is a bit higher than a measurable cardinal \(\kappa \) with Mitchell order \(\kappa^{++} \)).

This paper is organized as follows. Section 2 reviews filtrations and canonical functions. Section 3 reviews some facts about nonregular ultrafilters and the related notion of a weakly normal ultrafilter. Section 4 defines the “bounding construction” and proves essential facts about the construction, most of which are abstracted from [6]. Section 5 is the proof of part (1) of Theorem 1, and Section 6 is the proof of part (2) of Theorem 1.

2. Filtrations and Canonical Functions

The notation \(S^\kappa_\lambda \) will denote the set \(\{ \alpha < \kappa | \text{cf}(\alpha) = \lambda \} \). We will also write \(S^m_n \) instead of \(S^\omega_\omega^m \).

As in Deiser and Donder [6] we will make extensive use of canonical functions. If \(A \) is a set of cardinality \(\kappa \), a filtration of \(A \) is a continuous \(\subset \)-increasing sequence \(\langle A_\alpha | \alpha < \kappa \rangle \) such that \(|A_\alpha| < \kappa \) for every \(\alpha < \kappa \) and \(A = \bigcup_{\alpha < \kappa} A_\alpha \). If \(\kappa \) is regular and uncountable then any two filtrations of \(A \) agree on a club. So if \(\nu < \kappa^+ \) and \(\langle A_\alpha^\nu | \alpha < \kappa \rangle, \langle B_\alpha^\nu | \alpha < \kappa \rangle \) are filtrations of \(\nu \), then the functions \(\alpha \mapsto \text{otp}(A_\alpha^\nu) \) and \(\alpha \mapsto \text{otp}(B_\alpha^\nu) \) agree on a club. The equivalence class\(^3\) of \(\alpha \mapsto \text{otp}(A_\alpha^\nu) \) is called the

\(^2\)0-sword is an object analogous to 0-sharp; it is an iterable mouse with a top measure of Mitchell order 1. In the absence of 0-sword, the core model \(K \) can be constructed and has many properties that \(L \) has in the absence of 0-sharp. In this paper we will use 0-pistol instead, which is a stronger object than 0-sword; see Section 4.

\(^3\)modulo the equivalence relation on \(^*V \) defined by agreement on a club.
ν-th canonical function on κ. There are also inductive characterizations of the canonical functions. Let h_0 be the zero function (on κ); if h_ν is defined let $h_{\nu+1} := h_\nu + 1$; and for limit $\nu < \kappa^+$ fix any cofinal increasing\(^4\) sequence $\langle \nu_\alpha | \delta < \text{cf}(\nu) \rangle$ in ν and define:

\[
(1) \quad h_\nu(\alpha) = \begin{cases}
\sup_{\delta < \text{cf}(\nu)} h_{\nu_\beta}(\alpha) & \text{if \text{cf}(\nu) < \kappa} \\
\sup_{\beta < \alpha} \nu_\beta(\alpha) & \text{if \text{cf}(\nu) = \kappa}
\end{cases}
\]

Then for each $\nu < \kappa^+$, h_ν represents the ν-th canonical function on κ.

We will often use constructions of the following form, where κ is regular and uncountable. Fix some large regular $\theta \geq \kappa^+$ and a wellordering Δ of H_θ. For each $b \in H_\theta$ of cardinality κ let $\text{Filt}_b = \langle \text{Filt}_b(\alpha) | \alpha < \kappa \rangle$ denote the Δ-least filtration of b; note this can just be viewed as $\langle f^b \alpha | \alpha < \kappa \rangle$ where f^b is some surjection $\kappa \to b$. Let S^b be the collection of $X \in P_\kappa(H_\theta)$ such that $X \times (H_\theta, \in, \Delta, \{b\})$ and $X \cap \kappa$ is transitive; for each such X let $\alpha_X := X \cap \kappa$. Let $\bar{S}^b := \{\alpha_X | X \in S^b\}$.

For each $X \in S^b$ let $\sigma_X : H_X \to H_\theta$ be the inverse of the Mostowski collapsing map for X. Since $b \in X < (H_\theta, \Delta, \in)$ then $\text{Filt}_b \in X$ and it is straightforward to show that $X \cap b = \text{Filt}_b X$.

Now suppose $|\text{trcl}(b)| < \kappa^+$ (note since we’re assuming $|b| = \kappa$, then this means $|\text{trcl}(b)| = \kappa$). If X, Y are both in S^b and $\alpha_X = \alpha_Y =: \alpha$, then $\sigma_X^{-1}(b) = \sigma_Y^{-1}(b)$; this is because $X \cap \text{trcl}(b) = \text{Filt}_b \text{trcl}(b) = Y \cap \text{trcl}(b)$. Thus the following definition does not depend on the particular choice of X:

Definition 2. If $b \in H_{\kappa^+}$ and $\alpha \in \bar{S}^b$, b_α is defined to be $\sigma_X^{-1}(b)$ where X is any element of S^b with $\alpha_X = \alpha$. Sometimes we will refer to the function $\alpha \mapsto b_\alpha$ as the canonical function indexed by b and denote it h_b.

Finally, suppose $\nu \in S^\kappa_{\kappa^+}$, $\langle \nu_\alpha | \delta < \kappa \rangle$ is a cofinal sequence in ν, and $X \in S^\nu$. Then $X \cap \{\nu_\alpha | \delta < \kappa \} = \{\nu_\alpha | \delta < \alpha_X \}$ and:

\[
(2) \quad \begin{align*}
\sigma_X^{-1}(\nu) &= h_\nu(\alpha_X) \\
\sigma_X^{-1}(\langle \nu_\alpha | \delta < \kappa \rangle) &= \langle h_{\nu_\alpha}(\alpha_X) | \delta < \alpha_X \rangle
\end{align*}
\]

3. **Weakly normal and nonregular ultrafilters**

Let U be an ultrafilter on a regular uncountable cardinal κ. Consider the class \mathcal{G} of partial functions $f : \kappa \to V$ such that $\text{dom}(f) \in U$. For functions $f, g \in \mathcal{G}$, $f =_U g$ means that $\{\alpha \in \text{dom}(f) \cap \text{dom}(g) | f(\alpha) = g(\alpha) \} \in U$ (i.e. $\text{ult}(V, U) = \langle [f]_U = [g]_U \rangle$). The notations $f \in_U g$ and $f <_U g$ (if f, g are ordinal-valued) are defined similarly.

\(^4\)Unless stated otherwise, whenever we specify a sequence $\langle \nu_\delta | \delta < \text{cf}(\nu) \rangle$, we will always require that it is increasing.
Definition 3. Let κ be a regular uncountable cardinal, and U a uniform ultrafilter over κ. Let $\lambda < \kappa$ be a cardinal. U is (λ, κ)-nonregular iff whenever $A \subset U$ and $|A| = \kappa$ then there is a $A' \subset A$ of cardinality λ such that $\cap A' \neq \emptyset$.

If $\kappa = \lambda^+$, then λ is clearly the largest possible cardinal where U might be (λ, κ)-nonregular. If U is (λ, λ^+)-nonregular then we say it is fully nonregular.

Just as nonregularity is a weakened version of κ-completeness of an ultrafilter, the following is a weakened notion of a normal ultrafilter:

Definition 4. A uniform ultrafilter U over κ is weakly normal iff whenever $f : \kappa \to \kappa$ is a regressive (partial) function with $\text{dom}(f) \in U$, then there is a $\delta < \kappa$ and $A \in U$ such that $f \upharpoonright A$ is bounded by δ.

If λ is regular then the existence of a fully nonregular ultrafilter on λ^+ is equivalent to the existence of a weakly normal ultrafilter on λ^+ which concentrates on $S_{\lambda^+}^\lambda$. In fact, every weakly normal ultrafilter concentrating on $S_{\lambda^+}^\lambda$ is fully nonregular, and any fully nonregular ultrafilter projects to a weakly normal ultrafilter in the Rudin-Keisler order, via a “least unbounded function” modulo the nonregular ultrafilter; see Kanamori [10]. Also, if U is uniform and weakly normal, it is easy to see that U extends the club filter.

Lemma 5. (Diagonalization Lemma). Suppose U is a weakly normal ultrafilter and $X_\xi \in U$ for every $\xi < \kappa$. Then $\{\alpha < \kappa | \alpha \in X_\xi \text{ for cofinally many } \xi < \alpha \} \in U$.

Note then if f_ξ is a function with domain $X_\xi \in U$ for each $\xi < \kappa$, then it’s natural to define $\text{diagsup}_{\xi < \kappa} f_\xi$ as the function with domain $\{\alpha < \kappa | \alpha \in \text{domain}(f_\xi) \text{ for cofinally many } \xi < \alpha \}(\in U)$ which sends $\alpha \mapsto \sup_{\xi < \alpha} f_\xi(\alpha)$. It’s easy to see that this diagsup is $\geq_U f_\xi$ for every $\xi < \kappa$.

For the remainder of the section, assume U is a weakly normal ultrafilter on ω_2 and $S_2^\alpha \in U$.

The proof of Lemma 5.3 in [6] goes through to show:

Lemma 6. There is no collection \mathcal{F} of functions such that:

- $|\mathcal{F}| = \omega_3$
- $\text{dom}(f) \in U$ and $\text{range}(f) \subset \omega_1$ for every $f \in \mathcal{F}$
- $\{\xi \in \text{dom}(f) \cap \text{dom}(g) | f(\xi) = g(\xi)\}$ is nonstationary for every distinct pair f, g in \mathcal{F}.

The collection \mathcal{F} in the statement of Lemma 6 is often called a “transversal sequence.”
Corollary 7. There is no pair \(h, G \) such that:
- \(G \) is an \(\omega_3 \)-sized collection of partial functions from \(\omega_2 \to \omega_2 \) whose domains are in \(U \);
- For every distinct \(f, g \in G \): there are only nonstationarily many \(\alpha \in \text{dom}(f) \cap \text{dom}(g) \) such that \(f(\alpha) = g(\alpha) \);
- \(h : \omega_2 \to \omega_2 \) and for every \(f \in G \), \(f <_U h \).

Proof. For each \(\beta < \omega_2 \) fix an injective \(\psi_\beta : \beta \to \omega_1 \). For each \(f \in G \), if \(\alpha \in \text{dom}(f) \) and \(f(\alpha) < h(\alpha) \), let \(f'(\alpha) := \psi_{h(\alpha)}(f(\alpha)) \). Then \(\{ f' \mid f \in G \} \) is an \(\omega_3 \)-sized collection of functions which has the properties listed in Lemma 6, a contradiction. \(\square \)

The proof of Corollary 5.4 in [6] shows:

Lemma 8. For every \(f : \omega_2 \to \omega_2 \), there is a \(\nu < \omega_3 \) such that \(f <_U h_\nu \).

Finally, the proofs of Lemma 5.5 and Corollary 5.6 in [6] show:

Lemma 9. If \(\text{cf}(\nu) = \omega_2 \) then \([h_\nu]_U \) is the least upper bound of \(\{ [h_\tau]_U \mid \tau < \nu \} \) in \(\text{ult}(V,U) \).

4. The Bounding Construction

Throughout the rest of the paper, \(K \) denotes the core model for non-overlapping extenders, built under the assumption that 0-pistol does not exist. Basic facts about 0-pistol and \(K \) can be found in Chapter 8 of [14]. In particular, \(K \) is capable of having a strong cardinal, but comparisons of mice are still linear. Note that if 0-pistol exists, then there is a sharp for an inner model with a strong cardinal, so the conclusion of Theorem 1 would hold and we’d be finished.

Let \(E \) be \(K \)’s extender sequence, and for each \(X \in P_{\omega_2}(H_{\omega_3}) \) such that \(X < (H_{\omega_3}, \in, E \mid \omega_3, ...) \) let \(K_X := \sigma_X^{-1}[K \cap X] \), where \(\sigma_X \) is the inverse of the Mostowski Collapse of \(X \).

Let \(S \) be the collection of \(X \in P_{\omega_2}(H_{\omega_3}) \) such that \(X < (H_{\omega_3}, \in, \Delta, ...) \), \(\alpha_X := X \cap \omega_2 \in S_1^2 \), and \(\lambda_X := \sup(X \cap \omega_3) \in S_1^3 \) (these are sometimes called sets of uniform cofinality \(\omega_1 \)). Then:

\[X \cap \omega_3 \text{ is an } \omega \text{-closed set of ordinals for every } X \in S. \] (so \(\sigma_X : H_X \to H_{\omega_3} \) is continuous on \(\text{cof}(\omega) \).) To see that (3) holds, suppose \(\nu \in S_0^3 \cap \text{Lim}(X) \). Since \(\lambda_X \) has uncountable cofinality, there is some \(\nu' \in X \cap \omega_3 \) such that \(\nu < \nu' \). Then there is a bijection \(g : \omega_2 \to \nu' \) such that \(g \in X \); since \(\alpha_X \) has uncountable cofinality, there is a \(\beta < \alpha_X \) such that \((g'' \beta) \cap \nu \) is cofinal in \(\nu \). But \(g'' \beta \subset X \), so \(X \cap \nu \) is cofinal in \(\nu \).
For \(\nu \in \omega_3 \) consider the set \(S \cap S^\nu \). Let \(\bar{S}^\nu \) be the projection of \(S \cap S^\nu \), i.e. \(\bar{S}^\nu := \{ \alpha_X | X \in S \cap S^\nu \} \). Note that \(\bar{S}^\nu \) contains an unbounded subset which is closed under limits of cofinality \(\omega_1 \). Since \(U \) extends the club filter and \(S^2 \subseteq U \) (by assumption), then \(\bar{S}^\nu \subseteq U \). For \(X \in S^\nu \):

\[
(4) \quad \sigma_X^{\nu} \text{ denotes the map } \sigma_X \upharpoonright h_\nu(\alpha_X).
\]

Note that for any \(X \) which has the sequence \(\langle \nu_\xi \delta < cf(\nu) \rangle \) as an element,\(^6\) it holds that \(h_\nu(\alpha_X) = otp(X \cap \nu) = \sigma_X^{-1}(\nu) \).

If \(X, Y \) are both in \(S^\nu \) and \(\alpha_X = \alpha_Y =: \alpha \), then \(X \cap \nu = Y \cap \nu \) (they both equal \(\text{Filt}^\nu_X \)). So \(\sigma_X^{\nu} = \sigma_Y^{\nu} \). In other words, the map \(\sigma_X^{\nu} \) is independent of our choice of \(X \in S^\nu \) with \(\alpha_X = \alpha \). So the following definition makes sense:

Definition 10. If \(\nu \in \omega_3 \) and \(\alpha \in \bar{S}^\nu \), we define \(\sigma_\alpha^{\nu} \) as the map \(\sigma_X^{\nu} \), where \(X \) is any element of \(S^\nu \) with \(\alpha_X = \alpha \).

Now for any \(X \in S \), consider the coiteration of \(K_X \) with \(K \). Let \(\Omega_X \) denote the length of the \(K_X \) vs. \(K \) coiteration, and

\[
\langle N_i^X, \pi_i^X, \mu_i^X, \kappa_i^X, \tau_i^X, \delta_i^X, (N_i^X)^* | i \leq j \leq \Omega_X \rangle
\]

denote the objects on the \(K \) side of the coiteration; i.e. \(N_i^X \) is the \(i \)-th iterate, \(\pi_i^X \) the iteration map, \(\mu_i^X \) the iteration index, \(\kappa_i^X \) the critical point, \(\tau_i^X \) the smaller of the cardinal successors of \(\kappa_i^X \) in the \(i \)-th iterates, \(\delta_i^X \) the maximal segment of \(N_i^X \) where \(\tau_i^X \) is a cardinal, and \((N_i^X)^* = N_i^X \upharpoonright \delta_i^X \).

Since each \(X \in S \) has an \(\omega \)-closed intersection with \(\omega_3 \) (see (3)), Lemma 39 from [2] applies,\(^7\) so \(\alpha_i^{+K_X} \) is not a cardinal in \(K \), the \(K \) side of the coiteration truncates to an \(\omega_1 \)-sized mouse either at stage 0 or at stage 1, and the \(K_X \) side of the coiteration is trivial. Let \(i_0^X \in \{ 0, 1 \} \) denote the first truncation stage. So \(|(N_{i_0^X})^*| < \omega_2 \). Since \(|(N_{i_0^X})^*| < \omega_2 \) and \(|K_X| < \omega_2 \), then \(|(N_i^X)^*| < \omega_2 \) for every \(i \in [i_0^X, \Omega_X) \), and \(\Omega_X < \omega_2 \). Also, since the \(K_X \) side is trivial in the coiteration, we have:

\[
(5) \quad \mu_i^X = \sigma_{K_X}(\kappa_i^X)
\]

for every stage \(i \) of the coiteration.

For \(\nu \in \omega_3 \) and \(X \in S^\nu \) let \(K_X^\nu = K_X|\sigma_X^{-1}(\nu) \). Let \(\theta_X^{\nu} \) denote the least ordinal \(\iota \) such that \(\mu_i^X \) is either not defined or is at least

\(^5\)This is standard; construct an elementary \(\in \)-chain \((X_\beta | \beta < \omega_2) \) consisting of models from \(S \cap S^\nu \), such that for \(\beta \) of cofinality \(\omega_1 \), \(X_\beta = \bigcup_{\beta < \beta} X_\beta \). Then the projection of this chain contains an \(\omega_1 \)-club in \(\omega_2 \).

\(^6\)where this \(\vec{\nu} \) was the cofinal sequence in \(\nu \) used to define the “official” representative \(h_\nu \) for the \(\nu \)-th canonical function in (1).

\(^7\)This was an argument due to Mitchell.
height$(K^\nu_X) = h_\nu(\alpha_X)$. In other words: θ^ν_X is equal to the length of the K vs. K^ν_X coiteration, unless the height of K^ν_X (which is $h_\nu(\alpha_X)$) indexes an extender in N^X_θ; in this latter case the length of the K vs. K^ν_X coiteration will equal $\theta^\nu_X + 1$. Define $N^X_\theta := N^\nu_{\theta^\nu_X}$. Similarly to the discussion before Definition 10, if $\alpha \in \bar{S}^\nu$ then the object K^ν_X does not depend on the particular choice of $X \in S^\nu$ with $\alpha_X = \alpha$. So the following definition makes sense:

Definition 11. If $\nu \in \omega_3$ and $\alpha \in \bar{S}^\nu$: define $K^\nu_{\alpha}, N^\nu_{\alpha}, \theta^\nu_{\alpha}$ as $K_X^\nu, N_X^\nu, \theta_X^\nu$ (respectively) where X is any element of S^ν with $\alpha = \alpha_X$.

Given any $\nu < \nu'$ in ω_3, K^ν_{α} is an initial segment of $K^\nu_{\alpha'}$ for all but nonstationarily many $\alpha \in S^\nu_2$, and neither move in their coiteration with K. Then the coiteration of K with K^ν_{α} is an initial segment of the coiteration of K with $K^\nu_{\alpha'}$. This motivates the next definition:

Definition 12. Let $\nu < \nu'$ and $\alpha \in \bar{S}^\nu \cap \bar{S}^\nu'$. Let M be any mouse such that K^ν_{α} is an initial segment of M, and let $\pi_{i,j}$ denote the iteration maps on the K side of the K vs. M coiteration. $\pi^\nu_{\alpha,\alpha'}$ will denote the (possibly partial) iteration map $\pi_{\theta^\nu_{\alpha'},\theta^\nu_{\alpha}}$.

Of course, a priori it could happen that $\theta^\nu_{\alpha'} = \theta^\nu_{\alpha}$; we will see this is not usually the case.

Suppose $\nu \in S^\nu_2$ and $t_\nu = \langle \nu_\delta|\delta < \omega_2 \rangle$ is a (not necessarily continuous) sequence cofinal in ν. Pick any $X \in S^\nu$. Then $X \cap \{ \nu_\delta|\delta < \omega_2 \} = \{ \nu_\delta|\delta < \alpha_X \}$; so $X \in S^\nu_s$ for every $\delta < \alpha_X$, and $X \cap \nu_\delta = \text{Filt}^\nu_{\alpha_X}$. Then

- For every $\delta < \alpha_X$: $K^\nu_{\alpha_X} = \sigma_X^{-1}(K|\nu)$ is an initial segment of $K^\nu_{\alpha_X} = \sigma_X^{-1}(K|\nu)$ and the height of $K^\nu_{\alpha_X}$ is $\text{otp}(\text{Filt}^\nu_{\alpha_X}) = h_\nu(\alpha_X)$;
- The height of $K^\nu_{\alpha_X}$ is $\text{otp}(\text{Filt}^\nu_{\alpha_X}) = h_\nu(\alpha_X)$ and $K^\nu_{\alpha_X} = \bigcup_{\delta < \alpha_X} K^\nu_{\alpha_X}$.

Since the K_X side of the coiteration is trivial and $K^\nu_X = \bigcup_{\delta < \alpha_X} K^\nu_{\alpha_X}$, then $\theta^\nu_X = \sup_{\delta < \alpha_X} \theta^\nu_{\alpha_X}$. This follows from the way we defined the ordinal θ^ν_X; it’s possible that the length of the coiteration of K with K^ν_X is actually $\theta^\nu_X + 1$, which may happen if $h_\nu(\alpha_X) = \text{ht}(K^\nu_X)$ is a coiteration index. However, we will see later that this does not happen if K has no overlapping extenders.

Let $\nu < \omega_3$. Recall for every $\alpha \in \bar{S}^\nu$, $\alpha + K^\nu_X$ is not a cardinal in K and there is a truncation by stage 1 on the K side. In particular, $(N^\nu_{\alpha})^*$ has cardinality $< \omega_2$. Let Q^ν_{α} denote the collection of all mice which are iterates of $(N^\nu_{\alpha})^*$ where the iteration is of length ≤ 2; i.e. the collection of all possible iterates of $(N^\nu_{\alpha})^*$ for at most 2 stages past stage θ^ν_{α} . Let $q^\nu_{\alpha} := \sup\{ \text{height}(N)|N \in Q^\nu_{\alpha}\}$; note $q^\nu_{\alpha} < \omega_2$. Define

\[
\psi_\nu : \bar{S}^\nu \to \omega_2 \text{ by } \alpha \mapsto q^\nu_{\alpha}
\]
The ordinals in S_K and we have not yet made any assumptions about the α-strength of ν; see Section 4. There is a key difference in the construction here and that in [4]: in the current construction, we have not yet made any assumptions about the K-strength of the ordinals in $S_\omega^2 \cap K$, as this is not needed for the bounding construction. Recursively define a closed unbounded subset D of ω_3 as follows: suppose some initial segment D of D has been defined. If D has no largest element, we choose $\sup(\bar{\nu})$ to be the next element of D. Otherwise D has a largest element, say ν. Then the next element of D—which we will denote ν^*—is chosen so that $\psi_\nu < h_{\nu^*}$; this is possible by Lemma 8.

Then for every $\nu \in D$ there are U-many α such that $\psi_\nu(\alpha) < h_{\nu^*}(\alpha)$. This is the scenario described before (7), so

$$\theta^{\nu^*}_\nu < U \theta^{\nu^*_\nu}_\nu \quad \text{(in fact } \theta^{\nu^*_\nu}_\nu + 1 < U \theta^{\nu^*_\nu}_\nu)$$

Here, the symbol $\theta^{\nu^*_\nu}_\nu$ denotes the (partial) function $\alpha \mapsto \theta^{\nu^*_\nu}_\nu$. We will also use the notation $\{\theta^{\nu^*_\nu}_\nu < \theta^{\nu^*_\nu}_\nu\}$ to denote the set of α such that both $\theta^{\nu^*_\nu}_\nu$ and $\theta^{\nu^*_\nu}_\nu$ are defined and $\theta^{\nu^*_\nu}_\nu < \theta^{\nu^*_\nu}_\nu$ (and similarly for other functions on ω_2).

Then for $\alpha \in \{\theta^{\nu^*_\nu}_\nu < \theta^{\nu^*_\nu}_\nu\}$ let $\kappa^{\nu^*_\nu}_\alpha := \kappa^{\nu^*_\nu}_\alpha$ where $X \in S^K \cap S^{\nu^*_\nu}$ and $\alpha = \alpha_X$—i.e. the critical point at stage $\theta^{\nu^*_\nu}_\nu$ of the K versus $K^{\nu^*_\nu}$ coiteration. Note that if ν^* is some element of D which is at least ν^* and $\alpha = \alpha_X$ for some $X \in S^{\nu^*_\nu} \cap S^{\nu^*_\nu}$ then $\kappa^{\nu^*_\nu}_\alpha$ is also the critical point at stage $\theta^{\nu^*_\nu}_\nu$ of the K versus $K^{\nu^*_\nu}$ coiteration. Similarly define $\mu^{\nu^*_\nu}_\alpha$ as the iteration index at stage $\theta^{\nu^*_\nu}_\alpha$ of the K versus $K^{\nu^*_\nu}$ coiteration. Note that there may be a truncation at stage $\theta^{\nu^*_\nu}_\nu$. We will arrange that, often enough, such truncations do not occur; this is not essential to the argument but it will provide some simplifications.

The construction of D guarantees that for every $\nu \in D$:

$$\psi_\nu < U h_{\nu^*} \leq U \psi_{\nu^*}$$

and

$$h_{\nu^*} \leq U \psi_{\nu^*} \leq U \kappa^{\nu^*}_{\theta^{\nu^*_\nu}_\nu + 1} \leq U \kappa^{\nu^*}_{\theta^{\nu^*_\nu}_\nu} \leq U \psi_{\nu^*}$$

by def. $\kappa^{\nu^*}_{\theta^{\nu^*_\nu}_\nu} < U \psi_{\nu^*}$.
Lemma 9 then guarantees that for every \(\nu \in \text{Lim}(D) \cap S^3_2 \), \(h_\nu \) is the least upper bound of \(\{ \kappa^\nu_{(+)} \mid \tau \in D \cap \nu \} \) in the ordering \(<_U \). Since clearly \(\kappa^\nu_{(+)} \geq_U \kappa^\tau_{(+)} \) for every \(\tau \in D \cap \nu \), then

\[
(11) \quad h_\nu \leq_U \kappa^\nu_{(+)} \text{ for every } \nu \in \text{Lim}(D) \cap S^3_2
\]

We will eventually show that whenever \(R \) is a stationary subset of \(D \cap S^3_2 \), there are many \(\nu \in R \) such that \(h_\nu =_U \kappa^\nu_{(+)} \).

Also, we note that whenever \(\nu < \nu' < \nu'' \) are all in \(D \), then

\[
(12) \quad h_\nu <_U \kappa^\nu_{(+)} <_U h_{\nu''}.
\]

To see (12): since \(\nu^* \leq \nu' \) and \((\nu')^* \leq \nu'' \) the bounding construction yields \(h_\nu <_U \kappa^\nu_{(+)} \leq U h_{\nu'} \leq U h_{\nu''} \).

Lemma 13. For every \(\nu \in \text{Lim}(D) \cap S^3_2 \):

1. There are \(U \)-many \(\alpha \) such that \(\theta^\nu_\alpha \) is a limit ordinal.
2. Let \(t_\nu = \langle \nu_\delta \mid \delta < \omega_2 \rangle \) be a sequence of members of \(D \) which is cofinal in \(\nu \). Then there are \(U \)-many \(\alpha \) such that
 a. \(h_\nu(\alpha) = \sup_{\delta < \alpha} \kappa^\nu_\delta \)
 b. \(\text{height}(N^\nu_\alpha) < h_\nu(\alpha) \) for all sufficiently large \(\delta < \alpha \).

Proof. First prove part 1. Fix any \(t_\nu = \langle \nu_\delta \mid \delta < \omega_2 \rangle \) which is a sequence of members of \(D \) which is cofinal in \(\nu \). Recall that the \(K^\nu_\alpha \) side of the coiteration is trivial and \(\theta^\nu_\alpha = \sup_{\delta < \alpha} \theta^\nu_\delta \) is the least stage of the \(K \) vs. \(K^\nu_\alpha \) coiteration where the iteration index is at least \(\text{ht}(\kappa^\nu_\alpha) \) (or the length of the \(K \) vs. \(K^\nu_\alpha \) coiteration, if there is no such index). For each \(\delta < \omega_2 \), let \(B_\delta := \{ \alpha \mid \theta^\nu_\alpha < \theta^\nu_{\delta+1} \} \); this is an element of \(U \) by (8) (note the least element of \(D \) above \(\nu_\delta \) is \(\leq \nu_{\delta+1} \)). Then \(B := \{ \alpha \mid \alpha \in \bigcap_{\delta \in B_\delta} \} \) is an element of \(U \) by Lemma 5. Then if \(\alpha \in B \), the sequence \(\langle \theta^\nu_\alpha \mid \delta < \alpha \rangle \) does not stabilize; so \(\theta^\nu_\alpha = \sup_{\delta < \alpha} \theta^\nu_\delta \) is a limit ordinal.

The proof of the part 2 is similar. Fix any \(\nu_\delta \mid \delta < \omega_2 \rangle \) which is contained in \(D \) and cofinal in \(\nu \). By (12), the set \(B_\delta := \{ \alpha \mid h_{\nu_\delta}(\alpha) < \kappa^\nu_{\delta+1} < h_{\nu_{\delta+2}}(\alpha) \} \) is an element of \(U \). By Lemma 5, \(B := \{ \alpha \mid \alpha \in \bigcap_{\delta \in B_\delta} \} \) is an element of \(U \). Pick any \(\alpha \in B \); then \(h_{\nu_\delta}(\alpha) < \kappa^\nu_{\delta+1} < h_{\nu_{\delta+2}}(\alpha) \) for cofinally many \(\delta < \alpha \), so \(\sup_{\delta < \alpha} h_{\nu_\delta}(\alpha) \leq \sup_{\delta < \alpha} \kappa^\nu_{\delta+1} \leq \sup_{\delta < \alpha} \kappa^\nu_{\delta+2}(\alpha) \). But the left and right sides of this last inequality are both \(h_\nu(\alpha) \), so \(h_\nu(\alpha) = \sup_{\delta < \alpha} \kappa^\nu_\delta \).

Finally, we find \(U \)-many \(\alpha \) such that \(\text{height}(N^\nu_\alpha) < h_\nu(\alpha) \) for sufficiently large \(\delta < \alpha \). Let \(\delta < \omega_2 \). The definition of \(\psi_{\nu_\delta} \) and the bounding construction imply \(\text{height}(N^\nu_\delta) \leq_U \psi_{\nu_\delta} < U h_{\nu_{\delta+1}} \); and since \(h_{\nu_\delta} <_U h_{\nu} \) (in fact \(h_{\nu_\delta}(\alpha) < h_{\nu}(\alpha) \) for all but nonstationarily many \(\alpha \in S^3_2 \)), in particular \(E_\delta := \{ \alpha \mid \text{height}(N^\nu_\alpha) < h_\nu(\alpha) \} \) is an element of \(U \). By
Lemma 5 there are U-many α such that $\alpha \in E_{\delta}$ for cofinally many $\delta < \alpha$. Then for such α we have $\text{height}(N^{\nu}_{\alpha}) < h_{\nu}(\alpha)$ for cofinally many $\delta < \alpha$. Since $\theta^{\nu}_{\alpha} = \sup_{\delta < \alpha} \theta^{\nu}_{\alpha}$ is a limit ordinal (by part 1), then in fact $\text{height}(N^{\nu}_{\alpha}) < h_{\nu}(\alpha)$ for all sufficiently large $\delta < \alpha$. \hfill \Box

So (11) and Lemma 13 imply that for all but nonstationarily many $\nu \in S_{2}^{3}$, if $\langle \nu_{\delta} | \delta < \omega_{2} \rangle$ is cofinal in ν then there are U-many α such that:

\begin{equation}
\sup_{\delta < \alpha} \kappa^{\nu}_{\alpha} = h_{\nu}(\alpha) \leq \kappa^{\nu}_{\alpha}
\end{equation}

We will eventually replace the inequality in (13) with an equality (mod U).

Much of the theory in the remainder of this section is implicit in [6]. A subtle but important difference, however, is that in the current paper we arrange that certain properties hold on V-clubs of ordinals in S_{2}^{3}, rather than just on stationary sets; this is essential to the proof in the later sections.

Definition 14. A system of objects from the winning mouse is a sequence of functions $S = \langle \text{Obj}^{\nu}_{\alpha}(\cdot) | \nu \in R \rangle$ where $R \subseteq S_{2}^{3}$ is stationary and for every $\nu \in R$: $\text{dom}(\text{Obj}^{\nu}_{\alpha}(\cdot)) \in U$ and $\text{Obj}^{\nu}_{\alpha}(\cdot) \in U$. N^{ν}_{α}.

Lemma 15. Suppose $R \subseteq \text{Lim}(D) \cap S_{2}^{3}$ and $S = \langle \text{Obj}^{\nu}_{\alpha}(\cdot) | \nu \in R \rangle$ is a system of objects from the winning mouse. Then there is a stationary $R' \subseteq R$, an ordinal $\bar{\tau} < \omega_{3}$ such that: for every $\nu \in R'$ there are U-many α where

\begin{enumerate}
 \item There is no truncation at any coiteration stages in the interval $[\theta^{\nu}_{\alpha}, \theta^{\nu}_{\alpha})$
 \item $\text{Obj}^{\nu}_{\alpha}$ is in the range of the iteration map $\pi^{\tau, \nu}_{\alpha}$ (see Definition 12 for the meaning of $\pi^{\tau, \nu}_{\alpha}$).
 \item The preimage of $\text{Obj}^{\nu}_{\alpha}$ by $\pi^{\tau, \nu}_{\alpha}$ appears in the corresponding mouse strictly below level $h_{\tau}(\alpha)$ of that mouse.
\end{enumerate}

Proof. For each $\nu \in R$ fix some $t_{\nu} = \langle \nu_{\delta} | \delta < \omega_{2} \rangle$ which is a sequence of points in D which is cofinal in ν. By Lemma 13, θ^{ν}_{α} is a limit ordinal for every $\nu \in D \cap S_{2}^{3}$ (for U-many α); so there is some $\delta^{\nu}(\alpha) < \alpha$ such that a thread to $\text{Obj}^{\nu}_{\alpha}$ appears by stage θ^{ν}_{α} and there are no truncations for stages in the interval $[\theta^{\nu}_{\alpha}, \theta^{\nu}_{\alpha})$. More precisely: letting $\bar{\theta} := \theta^{\nu}_{\alpha}$ then $\text{Obj}^{\nu}_{\alpha}$ is in the range of the iteration map $\pi^{X, \nu}_{\alpha}$ whenever $X \in S^{\nu}$ and $\alpha = \alpha_{X}$. By the weak normality of U, for each $\nu \in R$ there is a $\delta^{\nu} < \omega_{2}$ and a set $A_{\nu} \in U$ such that $\delta^{\nu}_{\alpha} \leq \delta^{\nu}$ for every $\alpha \in A_{\nu}$; so the thread to $\text{Obj}^{\nu}_{\alpha}$ appears by stage θ^{ν}_{α} for every
\(\alpha \in A_t. \) The point is that for \(\alpha \in A_t, \) the superscript on the stage \(\theta^{\alpha^*}_{\alpha^*} \) no longer depends on \(\alpha. \)

Since \(R \subseteq \omega_3 \) is stationary and \(\delta^\nu \in \omega_2, \) there is a stationary \(\tilde{R} \subset R \) and a fixed \(\delta \) such that \(\delta^\nu = \delta \) for every \(\nu \in \tilde{R}. \) In other words, for every \(\nu \in \tilde{R} \) and every \(\alpha \in A_t, \) a thread to \(\text{Obj}^\nu_\alpha \) appears by stage \(\theta^{\alpha^*}_{\alpha^*}. \)

So for each \(\nu \in \tilde{R} \) define the following functions with domain \(A_t: \)

\[
\tilde{\theta}^\nu_\alpha := \theta^{\nu^*_\alpha} \\
\phi^\nu(\alpha) := \text{the preimage of } \text{Obj}^\nu_\alpha \text{ by } \pi^\nu_{\tilde{\theta}^\nu_\alpha, \theta^\nu_\alpha}
\]

Lemma 13—specifically the part about \(\text{height}(N^{\nu^*}_2) \)—implies for every \(\nu \in \tilde{R}: \)

\[
\phi^\nu <_U h^\nu
\]

Lemma 9 and (16) imply that for every \(\nu \in \tilde{R} \) there is a \(\tau(\nu) < \nu \) such that \(\phi^\nu <_U h_{\tau(\nu)}. \) So an application of the Fodor Lemma yields a fixed \(h^\nu \) and a stationary \(R' \subset \tilde{R} \) such that \(\phi^\nu <_U h^\nu \) for every \(\nu \in R'. \)

\[\text{Corollary 16. For all but nonstationarily many } \nu \in D \cap S_3^3: \text{ There are } U\text{-many } \alpha \text{ such that there are no truncations at any stage in the interval } [\theta^\nu_\alpha, \theta^{\nu^*}_\alpha]. \]

\[\text{Proof. Suppose to the contrary that there is a stationary } R \subseteq \text{Lim}(D) \cap S_3^3, \text{ such that for each } \nu \in R \text{ there are } U\text{-many } \alpha \text{ with some truncation in the interval } [\theta^\nu_\alpha, \theta^{\nu^*}_\alpha]; \text{ let } A_\nu \subseteq U \text{ be the collection of such } \alpha. \text{ Let } R' \subset R \text{ and } \tilde{\tau} < \omega_3 \text{ be as in the conclusion of Lemma 15. Pick any pair } \tilde{\nu} < \nu \text{ which are both in } R' \text{ and such that } \tilde{\nu} < \tilde{\nu}^* < \nu \text{ (recall the star superscript indicates the next element of } D \text{ above the point). Let } B_\nu \subseteq U \text{ be a collection of } \alpha \text{ where } (14) \text{ holds. Now } \tilde{\tau} < \tilde{\nu} < \tilde{\nu}^* < \nu \text{ and these are all in } D, \text{ so by } (8) \text{ the set } C := \{ \alpha | \theta^\nu_\alpha < \theta^{\nu^*_\alpha} < \theta^{\nu^*_\alpha} \} \text{ is an element of } U. \text{ So } A_\nu \cap B_\nu \cap C \subseteq U; \text{ pick any } \alpha \text{ in this intersection. Since } \alpha \in B_\nu \text{ then there are no truncations in } [\theta^\nu_\alpha, \theta^{\nu^*_\alpha}). \text{ But this contradicts that } \alpha \in A_\nu \cap C. \]

\[\text{Definition 17. Let } S = \{ \text{Obj}^\nu_\alpha | \nu \in R \} \text{ be a system of objects from the winning mouse. Let } R' \subset R. \text{ We say that } S \text{ lines up on } R' \text{ iff for every } \tilde{\nu} < \nu \text{ in } R': \]

\begin{itemize}
 \item There are \(U\)-many \(\alpha \in \bar{S}^\nu \cap \tilde{S}^\nu \) such that there are no truncations at any coiteration stages in the interval \([\theta^\nu_\alpha, \theta^{\nu^*_\alpha}] \)
 \item \(\tilde{\theta}^\nu(__) <_U \theta^\nu(__) \)
 \item \(\text{Obj}^\nu(__) \subseteq U \text{ range}(\pi^\nu_\alpha) \)
 \item \(\pi^\nu_\alpha(\text{Obj}^\nu(__)) =_U \text{Obj}^\nu(__) \)
\end{itemize}
If we specify that $\text{Obj}_\alpha := \kappa_\alpha$—i.e. if the system of objects from the winning mouse are chosen to be the first critical point beyond the K vs. K_{α}^ν coiteration—for every ν and α, then as in [6] these objects line up nicely (Lemma 18 below). Later, in Section 6 under the additional assumption that $|^{\omega_2} \omega_1 / U|$ is small, we will choose the objects of interest to be extenders, and use the small ultrapower assumption to get the objects to line up nicely.

Lemma 18. Same assumptions as Lemma 15. Let $R' \subset R$ be the stationary set from the conclusion of that Lemma.

If the system of objects from the winning mouse are just the critical points (i.e. $\text{Obj}_{\nu}(\alpha) = \kappa_{\nu}(\alpha)$ for each $\nu \in R$) then there is a stationary $R'' \subseteq R'$ such that the system lines up on R''.

Proof. First define the function $\tilde{\phi}^{\nu}$ as follows; it is similar to the function ϕ^{ν} from the proof of Lemma 15, but this new definition takes advantage of the fixed ordinal $\bar{\tau}$ obtained in that lemma:

\[\bar{\phi}^{\nu}(\alpha) := \text{the preimage of } \kappa^{\nu}(\alpha) \text{ by } \pi^{\nu}_{\theta_\bar{\tau}}\]

Then for every $\nu < \nu'$ in R': $\tilde{\phi}^{\nu} \leq_U \tilde{\phi}^{\nu'}$; in fact:

\[(18) \text{ The collection of } \alpha \text{ such that } \tilde{\phi}^{\nu}(\alpha) > \tilde{\phi}^{\nu'}(\alpha) \text{ is non-stationary} \]

since whenever $X \in S^{\nu} \cap S^{\nu'}$ then the coiteration of K with $K_{\alpha_X}^{\nu}$ is an “initial segment” of the coiteration of K with $K_{\alpha_X}^{\nu'}$, so $\tilde{\phi}(\alpha_X) \leq \tilde{\phi}(\alpha_X)$. This uses the fact that the objects of interest are the critical points of the coiteration; it is where the proof breaks down if the objects of interest are, e.g., extenders (though in Section 6 we will do exactly that, with an additional assumption on U).

Then:

\[(19) \langle \tilde{\phi}^{\nu}|\nu \in R' \rangle \text{ is eventually constant modulo } U \]

To see (19): suppose this failed. If $\nu < \nu'$ are in R' and $\tilde{\phi}^{\nu} \neq_U \tilde{\phi}^{\nu'}$, then by (18) and the fact that U extends the club filter, the only possibility is that $\tilde{\phi}^{\nu} <_U \tilde{\phi}^{\nu'}$. So the failure of (19) implies there is an unbounded $\bar{R}' \subset R'$ (not necessarily stationary) such that $\langle \tilde{\phi}^{\nu}|\nu \in \bar{R}' \rangle$ is a $<_U$-increasing sequence.

For each $\nu \in \bar{R}'$ let $\check{\nu}$ denote the least element of \bar{R}' above ν. Let $\tilde{\phi}^{\nu} := \tilde{\phi}^{\nu} \upharpoonright \{ \alpha \in \text{dom}(\tilde{\phi}^{\nu}) \cap \text{dom}(\tilde{\phi}) | \tilde{\phi}^{\nu}(\alpha) < \tilde{\phi}(\alpha) \}$ (note then \text{dom}(\tilde{\phi}^{\nu}) \in U). Then $\tilde{\phi}^{\nu} <_U \tilde{\phi}$ and (18) implies that whenever $\nu < \nu'$ are in \bar{R}' then $\tilde{\phi}^{\nu}$ and $\tilde{\phi}^{\nu'}$ agree at only nonstationarily many points.
Furthermore, there is a fixed function from \(\omega_2 \to \omega_2 \)—namely, \(h_{x} \)—which \(U \)-bounds \(\tilde{\phi}_\nu \) for every \(\nu \in \tilde{R}' \). This contradicts Corollary 7, and completes the proof of (19).

Let \(R'' \) be the tail end of \(R' \) on which \(\tilde{\phi}_\nu \) are pairwise equal modulo \(U \). Then \(R'' \) is the desired set.

Lemma 19. Assume \(R \subseteq S_2^3 \) is stationary. Let \(R'' \) be a stationary subset of \(R \) on which \((\kappa'_\nu \mid \nu \in R) \) lines up (such an \(R'' \) exists from the conclusion of Lemma 18). Then \(\kappa'_\nu =_U h_\nu \) for every \(\nu \in R'' \cap \text{Lim}(R'') \).

Proof. Fix any sequence \(t_\nu = \langle \nu_\delta \mid \delta < \omega_2 \rangle \) of points in \(R'' \) which is cofinal in \(\nu \). Let \(A_\nu \subseteq U \) be a set which witnesses the conclusion of Lemma 13. For each \(\delta < \omega_2 \), let \(\nu_\delta, \nu \) be both in \(R'' \) and the system lines up on \(R'' \), there is a set \(A_{\nu_\delta, \nu} \subseteq U \) which witnesses this fact (so \(\pi_{\alpha, \nu_\delta, \nu}(\kappa'_\nu) = \kappa'_\nu \) for every \(\alpha \in A_{\nu_\delta, \nu} \)). By Lemma 5 the set \(\{ \alpha \mid A_{\nu_\delta, \nu} \cap A_\nu \} \) is an element of \(U \); for such \(\alpha \), let \(I_\alpha := \{ \delta < \alpha \mid \pi_{\alpha, \nu_\delta, \nu}(\kappa'_\nu) = \kappa'_\nu \} \). Then \(\kappa'_\nu = \pi_{\alpha, \nu_\delta, \nu}(\kappa'_\nu) = \sup_{\delta < \alpha} \kappa'_\nu \) for each \(\delta \in I_\alpha \) (since \(I_\alpha \) is cofinal in \(\alpha \). Since \(\alpha \in A_\nu \) then \(\sup_{\delta < \alpha} \kappa'_\nu = h_\nu(\alpha) \). So \(\kappa'_\nu = h_\nu(\alpha) \).

In particular, since \(R \) was assumed to be any stationary subset of \(S_2^3 \) then:

Corollary 20. \(\kappa'_\nu =_U h_\nu \) for all but nonstationarily many \(\nu \in S_2^3 \).

Corollary 21. Suppose for each \(\nu < \omega_3 \), \(b'_\nu \) is a subset of \(\nu \) which is an element of \(K \). Recall from Definition 2 that \(b'_\alpha \) is defined as \(\sigma_{x_\rho}(b') \) where \(x \) is an element of \(S_b' \) such that \(\alpha = \alpha_x \) and \(b' \in X \). Then \(b'_\nu \subseteq N'_\nu \) for all but nonstationarily many \(\nu \in S_2^3 \).

Proof. Since \(\nu' \in \varphi^K(\nu) \) then \(b'_\nu \subseteq (h_\nu(\nu)) = (K'\nu(\nu)) \); the last equality is by Corollary 20. Since the \(K'\nu \) side of the coiteration with \(K \) is simple (in fact trivial), then \(\varphi^K(\nu) \subseteq \varphi^K(\nu) \). So \(b'_\nu \subseteq (h_\nu(\nu)) \).

Corollary 22. Assume \(b \in \varphi^K(\omega_3) \) and \(R \) is a stationary subset of \(S_2^3 \). Let \(b'_\nu := b \cap \nu \) for each \(\nu < \omega_3 \). By Corollary 21, letting \(R_b := \{ \nu \in S_2^3 \mid b'_\nu \subseteq N'_\nu \} \), \(R - R_b \) is nonstationary, so \(S_b := \{ (\kappa'_\nu, b'_\nu) \mid \nu \in R_b \} \) is a system of objects from the winning mouse.

Then there is a stationary \(R'' \subseteq R_b \) on which \(S_b \) lines up.

Proof. Let \(R'_b \) be a stationary subset of \(R_b \) whose existence is guaranteed by Lemma 15, and let \(\bar{\tau} \) be the fixed ordinal from the conclusion of that lemma; so \(b'_\nu \subseteq (\pi_{\bar{\tau}}' \nu) \) for every \(\nu \in R'_b \).
Using Lemma 18, refine R_b' further to a stationary R_b'' on which the critical points align; i.e. such that $\langle \kappa_{(\cdot)^{\alpha}}^{\nu} \rangle | \nu \in R_b'' \rangle$ lines up on R_b''.

Pick any $\bar{\nu} < \nu$ both in R_b''; WLOG assume $\bar{\tau} < \min(R_b'')$. Since $R_b'' \subset R_b'$ and $\bar{\tau} < \bar{\nu} < \nu$, then

$$b_{\alpha}^\nu \in \text{range}(\pi_{\alpha}^{\bar{\nu},\nu}) \text{ for } U\text{-many } \alpha.$$ Let $A_{\bar{\nu},\nu} \in U$ be the collection of such α.

Now consider any $X \in S^\nu \cap S^\nu \cap S^b$, and let $\sigma_X : H_X \rightarrow H_\theta$ be the inverse of the Mostowski collapsing map for X. Let $\alpha = X \cap \omega_2$. Then

$$b_\alpha^\nu = b_{X}^{\nu} = \sigma_X^{-1}(b_{\nu}^{\nu}) = \sigma_X^{-1}(b_{\nu}^{\nu} \cap \bar{\nu}^{\nu}) = \sigma_X^{-1}(b_{\nu}^{\nu} \cap \sigma_X^{-1}(\bar{\nu}^{\nu})) = b_{\alpha}^{\nu} \cap h_{\nu}(\alpha)$$

Let $B_{\bar{\nu},\nu}$ be the collection of such α; note $B_{\bar{\nu},\nu}$ is almost all of S^ν_1 and is thus an element of U.

Let $C_{\bar{\nu},\nu} \in U$ be the collection of α such that

$$\kappa_\alpha^\nu = h_{\nu}(\alpha) \text{ and } \kappa_{\alpha}^{\nu} = h_{\nu}(\alpha)$$

(Note that by Corollary 20 we can WLOG assume that $\kappa_{(\cdot)^{\alpha}}^{\nu} = \nu \text{ for every } \tau \in R_b'$.)

Finally, let $D_{\bar{\nu},\nu}$ be the collection of α such that $\pi_{\alpha}^{\bar{\nu},\nu}(\kappa_{\alpha}^{\nu}) = \kappa_{\alpha}^{\nu}$; this set is in U because $\langle \kappa_{(\cdot)^{\alpha}}^{\nu} \rangle | \nu \in R_b'' \rangle$ lines up on R_b''.

Then $\pi_{\alpha}^{\bar{\nu},\nu}(b_{\alpha}^{\nu}) = b_{\alpha}^{\nu}$ for any $\alpha \in A_{\bar{\nu},\nu} \cap B_{\bar{\nu},\nu} \cap C_{\bar{\nu},\nu} \cap D_{\bar{\nu},\nu}$.

\hspace{2cm} \square

Corollary 23. Same assumptions as Corollary 22; let R_b'' be as in the conclusion of that corollary. Then for every $\nu \in R_b'' \cap \text{Lim}(R_b'')$ and every sequence $s_\nu = \langle \nu_\delta | \delta < \omega_2 \rangle$ of points in R_b'' which is cofinal in ν, there is a set $G_{b_\nu}^\nu \in U$ such that for every $\alpha \in G_{b_\nu}^\nu$:

$$h_{\nu}(\alpha) = \kappa_{\alpha}^{\nu} \text{ and for cofinally many } \delta < \alpha:\n
(\nu_\delta(\alpha) = \kappa_{\alpha}^{\nu} \text{ and for cofinally many } \delta < \alpha):$$

$$\bullet \quad h_{\nu_\delta}(\alpha) = \kappa_{\alpha}^{\nu_\delta}\n
\bullet \quad \pi_{\alpha}^{\nu_\delta,\nu}(\kappa_{\alpha}^{\nu_\delta}) = \kappa_{\alpha}^{\nu}\n
\bullet \quad \pi_{\alpha}^{\nu_\delta,\nu}(b_{\alpha}^{\nu_\delta}) = b_{\alpha}^{\nu}$$

Proof. Fix a $\nu \in R_b'' \cap \text{Lim}(R_b'')$ and cofinal sequence $s_\nu = \langle \nu_\delta | \delta < \omega_2 \rangle$ ($\subset R_b''$) as in the statement of the corollary. For each $\delta < \omega_2$ let $G_{b_\nu}^\nu$ be the collection of α such that:

$$\bullet \quad h_{\nu_\delta}(\alpha) = \kappa_{\alpha}^{\nu_\delta}\n
\bullet \quad \pi_{\alpha}^{\nu_\delta,\nu}(\kappa_{\alpha}^{\nu_\delta}) = \kappa_{\alpha}^{\nu}\n
\bullet \quad \pi_{\alpha}^{\nu_\delta,\nu}(b_{\alpha}^{\nu_\delta}) = b_{\alpha}^{\nu}$$

Then $G_{b_\nu}^\nu$ is an element of U since the system S_δ lines up on R_b''. By Lemma 5 there are U-many α such that $\alpha \in G_{b_\delta}$ for cofinally many $\delta < \alpha$. \square
If we make the additional assumption on U that $|ω^2ω_1/U| = ω_2$, then every system of objects from the winning mouse lines up on a stationary set:

Lemma 24. Assume U is a weakly normal ultrafilter concentrating on S^2_1 and $|ω^2ω_1/U| = ω_2$. Then for every system $S = \langle Obj^-\nu | \nu \in R \rangle$ of objects from the winning mouse, there is a stationary $R'' \subset R$ on which S lines up.

Proof. Let R' and $\bar{\tau} < ω_3$ be the stationary set and ordinal, respectively, guaranteed by Lemma 15. For each $\nu \in R'$ define

$$ \bar{\phi}^\nu(\alpha) = \text{the preimage of Obj}^\nu \text{ by the iteration map } \pi^{\bar{\tau},\nu}. $$

Recall by Lemma 15 that for every $\nu \in R'$, there are U-many α such that the level of the mouse N^ν_α at which $\bar{\phi}^\nu(\alpha)$ appears is strictly less than $h_{\bar{\tau}}(\alpha)$. For each transitive $N \in H_{ω_3}$ fix an injection $g_N : N \rightarrow ω_1$. Let $N(\bar{\tau},\alpha)$ be the initial segment of the mouse N^ν_α corresponding to level $h_{\bar{\tau}}(\alpha)$. Define

$$ \psi^\nu(\alpha) := g_{N(\bar{\tau},\alpha)}(\bar{\phi}^\nu(\alpha)) $$

Note $ψ^\nu(\alpha)$ is defined for U-many α; so each $ψ^\nu$ is a function whose domain is in U and maps into $ω_1$. Since $|ω^2ω_1/U| = ω_2$ and R' is a stationary subset of $ω_3$, then by the $ω_3$-completeness of $NS_{ω_3}$ there is a stationary $R'' \subset R'$ such that $ψ^\nu =_U ψ^\nu$ for every $\bar{\nu}, \nu$ in R''. It follows that $\bar{\phi}^\nu =_U \bar{\phi}^\nu$ for every $\bar{\nu}, \nu$ in R'', and so S lines up on R''. □

For the rest of the paper, D' will refer to the collection of $\nu \in D \cap S^3_2$ such that $κ^\nu_{(-)} =_U h_\nu$; by Corollary 20 D' is almost all of S^3_2.

5. Proof of part 1 of Theorem 1

As in Chapter 8 of [14], for mice below 0-pistol, $o^M_*(κ)$ denotes the “Mitchell order of $κ$ in M”; more precisely, the ordertype of the collection of $ν \geq κ^+M$ which index an extender with critical point $κ$. $o^M(κ)$ denotes the least primitively recursively closed ordinal which is at least $κ^+$ and does not index an extender with critical point $κ$. If E is an extender on the M sequence which has critical point $κ$ and is generated by a single normal measure of M-Mitchell order $λ$, we will use $U^M(κ, λ)$ to denote this normal measure. For the rest of the paper, our background assumption is that there are no extenders on any mice with two generators; so every extender is generated by such a normal measure.
Theorem 25. Let $b \in \wp^K(\omega_3)$ code a wellordering of ω_3. Then $o^K_\nu(b) > \text{otp}(b \cap \nu)$ for all but nonstationarily many $\nu \in S^3_2$ (“all but nonstationarily many” is in the sense of V).

This could be equivalently formulated in terms of canonical functions on ω_3, but we will avoid that formulation to avoid confusion with the canonical functions on ω_2 which are already in use. We also find a nice characterization of the measures on such ν (Lemma 28). This characterization will then be used to define a K-ultrafilter on ω_3 and show it has the desired properties.\footnote{One of these properties is that the Mitchell order of this K-ultrafilter will be $\text{otp}(b)$. Since b was an arbitrary wellorder of ω_3 in K, this would imply that $o^K_\kappa(\kappa) \geq \kappa^+K$, where $\kappa = \omega^K_\nu$.}

Let $\gamma := \text{otp}(b)$; so $\gamma < \omega^+3$. We assume by induction that Theorem 25 holds for all ordinals $< \gamma$; i.e. whenever $\tau < \gamma = \text{otp}(b)$ then there is an ω_2-club $C_{>\tau} \subset \omega_3$ in V such that $o^K_\nu(b) > \text{otp}(b \cap \nu)$ for every $\nu \in C_{>\tau}$, where $b_\tau \in \wp^K(\omega_3)$ has ordertype τ.

Claim 26. There is an ω_2-club $C_{\geq b} \subset \omega_3$ such that $o^K_\nu(b) \geq \text{otp}(b \cap \nu)$ for every $\nu \in C_{\geq b}$.

Proof. Fix some sequence $\langle \tau_i | i < \text{cf}(\gamma) \rangle \in V$ cofinal in γ; if γ is a successor ordinal, say $\gamma = \tau_0 + 1$, the sequence is just $\langle \tau_0 \rangle$. Fix a large regular $\theta > 2^{\omega_3}$ and consider the collection \hat{C} of all $Z \in P_{\omega_3}(H_\theta)$ such that $Z \prec (H_\theta, \langle (\tau_i, C_{>\tau_i}, b_\tau_i)|i < \text{cf}(\gamma) \rangle, ..., Z \cap \omega_3 \in S^3_2$. Let $C_{\geq b} := \{Z \cap \omega_3 | Z \in \hat{C}\}$. For $Z \in \hat{C}$ let $\pi_Z : H_Z \rightarrow H_\theta$ be the inverse of the Mostowski collapse of Z. Let $\nu_Z := cr(\pi_Z) = Z \cap \omega_3$.

Now for all $i \in Z \cap \omega_3 = \nu_Z$, $\nu_Z \in C_{>\tau_i}$.\footnote{Because $C_{>\tau_i} \in Z$ and so (by elementarity) ν_Z is a limit of $C_{>\tau_i}$; since ν_Z has cofinality ω_2, and $C_{>\tau_i}$ is an ω_2-club, then $\nu_Z \in C_{>\tau_i}$.}

So:

- if $\text{cf}(\gamma) = \omega_3$, then $\nu_Z \in \Delta_{i<\omega_3}C_{>\tau_i}$ and $\text{otp}(b \cap \nu_Z) = \sup_{i<\omega_2} \text{otp}(b_\tau_i \cap \nu_Z)$.
- if $\text{cf}(\gamma) < \omega_3$ is a limit ordinal, then $\nu_Z \in \cap_{i<\text{cf}(\gamma)}C_{>\tau_i}$ and $\text{otp}(b \cap \nu_Z) = \sup_{i<\text{cf}(\gamma)} \text{otp}(b_\tau_i \cap \nu_Z)$
- if γ is a successor ordinal, say $\gamma = \tau + 1$, then $\nu_Z \in C_{>\tau}$ and $\text{otp}(b \cap \nu_Z) = \text{otp}(b_\tau \cap \nu_Z) + 1$.

In all 3 cases, $o^K_\nu(\nu_Z) \geq \text{otp}(b \cap \nu_Z)$.

Let $b^\nu := b \cap \nu$ for every $\nu < \omega_3$. Note that if $\nu \in D' \cap C_{\geq b}$, then $h_\nu(\alpha) = \kappa^\nu_\alpha$, $\mu^\nu_\alpha = o^K_\nu(\kappa^\nu_\alpha)$,\footnote{This follows from (5).} and the Mitchell order of $E^N_{\mu^\nu_\alpha}$ is at least $\text{otp}(b^\nu_\alpha)$ for U-many α. Furthermore, by Corollary 16 there is no
truncation at stage θ_α^ν, so the extender applied by the K side at this stage is total in N_α^{ν}. In particular:

For every $\nu \in C_{\geq b}$ there are U-many α such that

\begin{equation}
N_\alpha^{\nu} \text{ has a total extender on } h_\nu(\alpha) \text{ of Mitchell order otp}(b_\alpha^{\nu}).
\end{equation}

So for every $\nu \in C_{\geq b}$ the following definition makes sense: define an ultrafilter W^{b_ν} on $\varphi^K(\nu)$ by

\[z \in W^{b_\nu} \text{ iff } \{ \alpha \in S^\nu ; z_\alpha^{\nu} \in U^{N_\alpha^{\nu}}(h_\nu(\alpha), \text{otp}(b_\alpha^{\nu})) \} \in U. \]

(i.e. iff $\text{ult}(V, U) = [z^{\nu}]_U \in U^{[N_\alpha^{\nu}]_U}([h_\nu]_U, [b_\alpha^{\nu}]_U)$.) Here b_α^{ν} and z_α^{ν} are defined as $(\sigma_\alpha^{\nu})^{-1}(b)$ and $(\sigma_\alpha^{\nu})^{-1}(z)$ (respectively), for those α such that $b, z \in \text{rng}(\sigma_\nu^{\nu})$ (see Definition 2). For the remainder of the proof, to cut down on notation we will often just write b_α^{ν} instead of $\text{otp}(b_\alpha^{\nu})$; e.g. $U^{N_\alpha^{\nu}}(k_\alpha^{\nu}, b_\alpha^{\nu})$ means the normal measure of Mitchell order $\text{otp}(b_\alpha^{\nu}).$

It is clear that W^{b_ν} is an ultrafilter on $\varphi^K(\nu)$. Our goals are to ultimately show that W^{b_ν} generates K’s extender of order $\text{otp}(b_\nu)$, and to characterize the W^{b_ν}’s in a way that allows us to build a K-measure on ω_3 of Mitchell order $\text{otp}(b)$.

Lemma 27. For all but nonstationarily many $\nu \in S^3_2$: $\sigma^K_\nu(\nu) > \text{otp}(b^{\nu}).$

Proof. Suppose this fails; then there is a stationary $R_b \subset C_{\geq b}$ such that $\sigma^K_\nu(\nu) = \text{otp}(b^{\nu})$ for every $\nu \in R_b$.

Since $b^{\nu} \in \varphi^K(\nu)$, then by Corollary 21, $S_b := \langle (b^{\nu}_{(-)}, k^{\nu}_{(-)}) \mid \nu \in R_b \rangle$ is a system of objects from the winning mouse. Since the b^{ν} are initial segments of b, by Corollary 22 there is a stationary $R_b'' \subset R_b$ on which S_b lines up.

For the remainder of the proof of Lemma 27, fix some $\nu \in R_b'' \cap \text{Lim}(R_b'')$ and any $t_\nu = \langle \nu_\delta \mid \delta < \omega_2 \rangle$ which is a subset of R_b'' and cofinal in ν.

Claim 27.1. $\langle \nu_\delta \mid \delta < \omega_2 \rangle$ generates W^{b_ν}; i.e. $z \in W^{b_\nu}$ iff $\nu_\delta \in z$ for sufficiently large $\delta < \omega_2$.

(Note we are still proving Lemma 27 by contradiction; the current claim will not in general characterize the measures W^{b_ν}.)

Proof. (of Claim 27.1) Let $z \in W^{b_\nu}$; so $z_{(-)} \in_U U^{N_\nu}_{(-)}(h_{(-)}(\cdot), b^{(-)}_{(-)})$ by definition. Recall $\theta_\alpha = \sup_{\delta < \alpha} \theta_\alpha^{\nu}$ is a limit ordinal for U-many α. So for such α there is a $\delta(\alpha) < \alpha$ such that a thread to z_α appears by stage $\theta_\alpha^{\nu}(\alpha)$ of the K vs. K_α^ν coiteration. By weak normality of U, there is a δ such that for U-many α, a thread to z_α appears by stage $\theta_\alpha^{\nu}(\alpha)$.

\begin{equation}
\text{For every } \delta \in [\delta, \omega_2); z_{(-)} \in_U \text{range}(\pi^{\nu}_{(-)}).\end{equation}
We will show \(\nu_3 \in z \) for every \(\delta \in [\delta, \omega_2) \): Fix such a \(\delta \). Recall that
\[\kappa^\nu_{(-)} = \mathcal{U} h_{\nu_3}(-) \]
and
\[\kappa^\nu_{(-)} = \mathcal{U} h_{\nu}(-) \]. \(\nu_3 \) and \(\nu \) are both elements of \(R^\nu_b \) and \(\mathcal{S}_b \) lines up on \(R^\nu_b \), so
\[\pi^\nu_{(\alpha, \delta)}(b^\nu_\alpha, \kappa^\nu_{(\alpha)}) = (b^\nu_\alpha, \kappa^\nu_{(\alpha)}) \]
for \(U \)-many \(\alpha \). And since \(z_{(-)} \in U \mathcal{U}^\nu_{(-)}(h_{\nu}(-), b^\nu_{(-)}) \) (by assumption), then for \(U \)-many \(\alpha \):

\[z_{\alpha} \cap \kappa^\nu_{\alpha} = (\pi^\nu_{\alpha, \delta})^{-1}(z_{\alpha}) \in U \mathcal{U}^\nu_{\alpha}(\kappa^\nu_{\alpha}, b^\nu_\alpha \cap \kappa^\nu_{\alpha}) = \]

Since \(\nu_3 \) is in \(R^\nu_b \) then

\[b^\nu_\alpha = \mathcal{U} \) the Mitchell order of \(h_{\nu_3}(-) \) in \(K^\nu_{(-)} \)

\[= \mathcal{U} \) the Mitchell order of \(\kappa^\nu_{\alpha} \) in \(K^\nu_{\alpha} \)

So by (26) and (27), there are \(U \)-many \(\alpha \) such that \(z_{\alpha} \cap h_{\nu_3}(\alpha) \) is an element of the measure applied at stage \(b^\nu_\alpha \)—and so \(h_{\nu_3}(\alpha) \in z_{\alpha} \)—for \(U \)-many \(\alpha \). Pick one such \(\alpha \); then \(\sigma^\nu_{\alpha}(h_{\nu_3}(\alpha)) = \nu_3 \) is an element of \(\sigma^\nu_{\alpha}(z_{\alpha}) = z \).

This completes the proof that every element of \(W^{b^\nu} \) contains a tail end of the set \(\{ \nu_3 \delta < \omega_2 \} \). Since \(W^{b^\nu} \) is an ultrafilter on \(K(\nu) \), then the converse is also true. \(\square \)(Claim 27.1)

We will complete the proof of Lemma 27 by showing \(W^{b^\nu} \) is on \(K \)'s sequence and has Mitchell order \(\text{otp}(b^\nu) \); this will contradict that \(\nu \in R^\nu_b \).

Claim 27.2. \(\{ \xi < \nu | \alpha^K(\xi) = \text{otp}(b \cap \xi) \} \in W^{b^\nu} \)

Proof. This follows easily from the definition of \(W^{b^\nu} \) and the fact that each \(\mathcal{U}^\nu_{\alpha}(h_{\nu}(\alpha), b^\nu_\alpha) \) has Mitchell order \(b^\nu_\alpha \). \(\square \)

By Corollary 29 from [2], to see that \(W^{b^\nu} \) generates an extender on \(K \)'s extender sequence, it suffices\(^{11}\) to show that \(W^{b^\nu} \) is normal with respect to \(K \) and that \(\text{ult}(K[\nu^+K], W^{b^\nu}) \) is wellfounded. Let \(G^b_{s^\nu} \in U \) be the set from the conclusion of Corollary 23 (recall \(s_\nu = \nu_3 \delta < \omega_2 \) is some sequence which is contained in \(R^\nu_b \) and cofinal in \(\nu \)). Pick an \(X \in P^{\omega_2}(H_{\theta}) \) with \(W^{b^\nu} \in X < H_{\theta} \) and \(\alpha_X := X \cap \omega_2 \in G^b_{s^\nu} \); there is such an \(X \) because \(G^b_{s^\nu} \in U \) and is thus a stationary subset of \(S^2_{1} \). Let \(\sigma_X : H_X \rightarrow H_{\theta} \) be the inverse of the Mostowski collapsing map. Let \(W_X := \sigma_X^{-1}(W^{b^\nu}) \). By Claim 27.1:

\[W_X \text{ is generated by } \sigma_X^{-1}(\langle \nu_3 \delta < \omega_2 \rangle) = \langle h_{\nu_3}(\alpha_X) \delta < \alpha_X \rangle \]

\(^{11}\)Under the assumption that 0-pistol does not exist, which we are assuming throughout.
Note that $\alpha^K_\nu(\nu) = b^{\nu+\nu}$ for every $\delta < \omega_2$, and so:

$$\alpha^K_\nu(h_\nu(\alpha_X)) = b^{\nu+\nu}_{\alpha_X} \text{ for every } \delta < \alpha_X.$$ (29)

Let I be the collection of $\delta < \alpha_X$ such that (23) holds; since $\alpha_X \in G^b_s$ then I is cofinal in α_X. Then the definition of I and (29) imply that the Mitchell order of the extender applied at stage $\alpha_X^{\nu+\nu}$ is equal to $\text{otp}(b^{\nu+\nu}_{\alpha_X})$, and $\pi^{\nu+\nu}_{\alpha_X}(b^{\nu+\nu}_{\alpha_X}) = b^{\nu+\nu}_{\alpha_X}$ for every $\delta \in I$. I.e. the measure $\mathcal{U}^{\nu+\nu}_{\alpha_X} := \mathcal{U}^{\nu+\nu}_{\alpha_X}(h_\nu(\alpha_X), b^{\nu+\nu}_{\alpha_X})$ in the iterate $N^{\nu+\nu}_{\alpha_X}$ is the result of “repeating a measure” at stages of the form $\alpha_X^{\nu+\nu}$ for $\delta \in I$; and the critical point at each such stage was of the form $h_\nu(\alpha_X)$. So

$$\text{The measure } \mathcal{U}^{\nu+\nu}_{\alpha_X} \text{ is generated by } \langle h_\nu(\alpha_X) | \delta \in I \rangle.$$ (30)

Since $\wp^K_X(h_\nu(\alpha_X)) \subseteq \wp^{\nu+\nu}_{\alpha_X}(h_\nu(\alpha_X))$, then (28) and (30) imply:

$$W_X = \mathcal{U}^{\nu+\nu}_{\alpha_X} \cap \wp^K_X(h_\nu(\alpha_X))$$ (31)

(In fact they’re equal; we could WLOG assume there is no truncation at stage $\alpha_X^{\nu+\nu}$ by Corollary 16.)

Now suppose that either

• $W^{\nu+\nu}$ were not normal with respect to K, or
• $\text{ult}(K|\nu^{+K}, W^{\nu+\nu})$ were illfounded.

Then H_X would believe the same about W_X with respect to K_X. We show how to achieve a contradiction if $\text{ult}(K|\nu^{+K}, W^{\nu+\nu})$ is illfounded; if $W^{\nu+\nu}$ fails to be normal with respect to K, the proof is similar. So suppose $\text{ult}(K|\nu^{+K}, W^{\nu+\nu})$ is illfounded. Then by elementarity of σ_X, $\text{ult}(K_X|h_\nu(\alpha_X)^{+K_X}, W_X)$ is illfounded; let $\{f_n | n \in \omega\} \in H_X$ witness this fact. Since $h_\nu(\alpha_X)$ is the largest cardinal in $K_X|h_\nu(\alpha_X)^{+K_X}$, then WLOG we assume $f_n : h_\nu(\alpha_X) \rightarrow h_\nu(\alpha_X)$. But $h_\nu(\alpha_X) = \kappa^{\nu+\nu}_{\alpha_X}$ and so $\wp^K_X(h_\nu(\alpha_X)) \subseteq \wp^{\nu+\nu}_{\alpha_X}(h_\nu(\alpha_X))$. By (31), $\{f_n | n \in \omega\}$ witnesses an illfounded chain in $\text{ult}(N^{\nu+\nu}_{\alpha_X}, \mathcal{U}^{\nu+\nu}_{\alpha_X})$, which is a contradiction because $\mathcal{U}^{\nu+\nu}_{\alpha_X}$ is on the extender sequence of the mouse $N^{\nu+\nu}_{\alpha_X}$. (In the case where we assume W_X fails to be normal in K_X, we would contradict the fact that $\mathcal{U}^{\nu+\nu}_{\alpha_X}$ is normal with respect to $N^{\nu+\nu}_{\alpha_X}$.)

So K has an extender of order $\text{otp}(b \cap \nu)$ for all but nonstationarily many $\nu \in S_3^2$. This concludes the proof of Theorem 25. Next we show that, for many ν, the extender on ν of order $b^{\nu+\nu}$ in K is exactly (the extender generated by) $W^{\nu+\nu}$. This fact will be used later in the definition of measures on ω_3.

Lemma 28. Let $C_{>b}$ be an ω_2-closed unbounded subset of ν such that $\alpha^K_\nu(\nu) > \text{otp}(b \cap \nu)$ for every $\nu \in C_{>b}$ (such a set exists by Lemma 27). Let R_b be any stationary subset of $C_{>b}$. Then there is a stationary $R' \subset R_b$ with the properties:
• $W^{b'}$ is (generates) K’s extender with critical point ν of order b' for every $\nu \in R'_b$.

• Whenever $\nu \in R'_b \cap \text{Lim}(R''_b)$ then $W^{b'}$ has the following characterization:

\[
z \in W^{b'} \text{ iff } z \cap \nu' \in U^K(\nu', b') \text{ for sufficiently large } \nu' \in \nu \cap R''_b.
\]

Proof. Let $S = \langle b''_\delta, \kappa''_\delta | \delta \in R_b \rangle$; by Corollary 21 S is a system of objects of the winning mouse. By Corollary 22 there is a stationary $R''_b \subset R_b$ on which S lines up.

Pick any $\nu \in R''_b \cap \text{Lim}(R''_b)$ and fix any sequence $t_\nu = \langle \nu_\delta | \delta < \omega_2 \rangle$ of points in R''_b which is cofinal in ν. So for each $\delta < \omega_2$ we know K has a measure of order b''_δ on ν_δ, but we don’t yet know that it is just $W^{b''_\delta}$. Similarly we know K has a measure of order b''_δ on ν but do not yet know that it is $W^{b'}$.

The proof of (32) is very similar to the proof of Claim 27.1, but note that in the current proof $W^{b'}$ is being characterized by reflection rather than by a generating sequence. Very briefly, suppose we are given some $z \in W^{b'}$. Use weak normality of U and the fact that θ''_δ is a limit ordinal for U-many α to find a $\delta^* < \omega_2$ such that $z(-) \in U \text{ range}(\pi_{\nu, \nu'}^\nu)$ (and for U-many α there are no truncations at stages in the interval $[\theta''_\delta, \theta''_{\omega_2}]$). Then pick any $\delta \in [\delta^*, \omega_2)$. First, since $\nu_\delta \in R_b$ then $o^K(\nu_\delta) > b''_\delta$; this implies that for U-many α, K''_α and N''_α have exactly the same measure of order b''_α on $h_\nu(\alpha)$, since the index of the measure applied on the N''_α side is just the least ordinal which does not index an extender on the K''_α side (see (5)). Moreover, by coherency of the iteration, N''_α and N''_α have the same measure of order b''_α on $h_\nu(\alpha)$. Finally, since the K''_α side of the coiteration is trivial, then K''_α is just an initial segment of K''_α. To summarize: the mice N''_α, N''_α, and K''_α all have exactly the same measure of order b''_α on $h_\nu(\alpha)$; let ν_δ denote this common measure. Then use the fact that ν_δ, ν are both in R''_b, along with the assumption that $z \in W^{b'}$, to show that $z_\alpha \cap h_\alpha(\alpha) \in \nu_\delta$; then applying σ''_α yields that $z \cap \nu_\delta \in U^K(\nu_\delta, b''_\delta)$. This completes the sketch of the proof of (32).

Finally, we use (32) to show that $W^{b'}$ is in fact on K’s extender sequence. The proof is similar to the end of the proof of Lemma 27. Let $G^{b'}_{t_\nu} \in U$ be the set from the conclusion of Corollary 23. Pick an $X \in P_{\omega_1}(H_\theta)$ of cardinality ω_1 such that $t_\nu \in X$ and $\alpha_X \in G^{b'}_{t_\nu}$; again, this is possible because $G^{b'}_{t_\nu} \in U$ and is thus stationary. Let $\sigma_X : H_X \to H_\theta$ be the inverse of the Mostowski collapsing map of X, and let $W_X = \sigma_X^{-1}(W^{b'})$. Let I be the collection of $\delta < \alpha_X$ where (23) holds; since $\alpha_X \in G^{b'}_{s_{\alpha_X}}$ then I is cofinal in α_X. Now for every $\delta \in I$, the
measure on $h_{\nu_\delta}(\alpha_X)$ of Mitchell order $b_{\alpha_X}^{\nu_\delta}$ is exactly the same in the mice K_X, $N_{\alpha_X}^{\nu_\delta}$, and $N_{\alpha_X}^{\nu}$; let \mathcal{V}_δ denote this common measure. Then the measure $U_{\alpha_X}^{\nu_\delta} := U^{N_{\alpha_X}}(h_{\nu_\delta}(\alpha_X), b_{\alpha_X}^{\nu_\delta})$ has the following characterization:

\begin{equation}
\tag{33}
z \in U_{\alpha_X}^{\nu_\delta} \iff z \cap h_{\nu_\delta}(\alpha_X) \in \mathcal{V}_\delta \text{ for all sufficiently large } \delta \in I.
\end{equation}

The elementarity of σ_X and (32) imply:

\begin{equation}
\tag{34}
z \in W_X \iff z \cap h_{\nu_\delta}(\alpha_X) \in \mathcal{V}_\delta \text{ for sufficiently large } \delta < \alpha_X.
\end{equation}

Then (33) and (34) imply:

\begin{equation}
\tag{35}
W_X = U_{\alpha_X}^{\nu_\delta} \cap \wp^K_X(h_{\nu}(\alpha_X))
\end{equation}

Similarly to the proof of Lemma 27, (35) can be used to show that W_X is normal with respect to K_X and that $\text{ult}(K_X, W_X)$ is wellfounded. So W_X generates an extender on K_X’s extender sequence, and so by elementarity of σ_X, W^{b^ν} generates an extender on K’s extender sequence (and (32) provided the desired characterization of W^{b^ν}).

\[\square\text{(Lemma 28)}\]

Finally, we build the measures on ω_3. Fix a stationary R''_b as in the conclusion of Lemma 28. Although we will not use this fact, it is interesting to note that such an R''_b can be obtained within any stationary subset of S_3^2 (see the statement of Lemma 28).

Define a filter F^b on $\wp^K(\omega_3)$ by:

\[z \in F^b \text{ iff } z \cap \nu \in W^{b^\nu} \text{ for sufficiently large } \nu \in R''_b\]

Claim 29. F^b is an ultrafilter on $\wp^K(\omega_3)$.

Proof. Suppose not; so there is a $z \in \wp^K(\omega_3)$ such that both $R''_{b,z} := \{ \nu \in R''_b \mid z \cap \nu \in W^{b^\nu} \}$ and $R''_{b,z'} := \{ \nu \in R''_b \mid z \cap \nu \in W^{b_{\nu}} \}$ are cofinal in ω_3. At least one of $R''_{b,z}$, $R''_{b,z'}$ must be stationary; WLOG assume $R''_{b,z}$ is stationary. Then since $R''_{b,z'}$ is unbounded in ω_3, there is a $\nu \in R''_{b,z} \cap \text{Lim}(R''_{b,z'})$. Fix a sequence $t_\nu = \langle \nu_\delta \mid \delta < \omega_2 \rangle$ of points in $R''_{b,z'}$ which is cofinal in ν. Since $z \cap \nu \in W^{b^\nu}$ and $t_\nu \subseteq R''_b$, then Lemma 28 yields that $z \cap \nu_\delta \in W^{b^\nu}$ for sufficiently large $\delta < \omega_2$. But this contradicts that each ν_δ is an element of $R''_{b,z'}$.

\[\square\]

Using the definition of F^b (and the fact that each W^{b^ν} is on K’s extender sequence), it is easy to see that F^b is normal with respect to K, $\text{ult}(K, F^b)$ is wellfounded, and F^b concentrates on the set $\{ \xi < \omega_3 \mid \theta^K(\xi) = \text{otp}(b \cap \xi) \}$. By Corollary 29 from [2], F^b generates K’s total extender on ω_3 of Mitchell order $\text{otp}(b)$.

6. Proof of part 2 of Theorem 1

In this section we make the additional assumption that \(|\omega_2 \omega_1/U| = \omega_2\) in order to show there is a mouse which has an extender with 2 generators. We keep all notation from the previous section; in particular \(D'\) is the set of \(\nu \in S_2^3\) such that \(h_\nu = \nu \kappa_\omega^-\); recall \(D'\) is almost all of \(S_2^3\).

For \(\nu \in D'\), by Lemma 13 there are \(U\)-many \(\alpha\) such that \(\theta^\nu_\alpha + 2 \leq \theta^\nu_{\alpha^*}\) and \(\theta^\nu_\alpha\) is a limit ordinal, among other properties; recall \(\nu^*\) is the least element of \(D\) above \(\nu\). For such \(\alpha\), let \(E^\nu_\alpha\) denote the extender applied at stage \(\theta^\nu_\alpha\); recall \(\mu^\nu_\alpha\) denotes the index of \(E^\nu_\alpha\) on \(N^\nu_\alpha\)'s extender sequence, and \(\mu^\nu_\alpha = o^K_\alpha(h_\nu(\alpha))\) (for \(U\)-many \(\alpha\)). For an ordinal \(\eta < \mu^\nu_\alpha = lh(E^\nu_\alpha)\), \((E^\nu_\alpha)_\eta\) denotes the \(N^\nu_\alpha\)-ultrafilter \(\{z | \eta \in E^\nu_\alpha(z)\}\) (i.e. viewing \(E^\nu_\alpha\) as a hypermeasure, it is the \(\eta\)-th element of the hypermeasure). If \(\eta\) is primitive recursively closed then \(E^\nu_\alpha|\eta\) denotes the extender \(z \mapsto E^\nu_\alpha(z) \cap \eta\).

For each \(\nu \in D'\) and \(\eta < o^K(\nu)\) define a \(K\)-ultrafilter \(W_{\nu, \eta}\) by:
\[
(36) \quad z \in W_{\nu, \eta} \text{ iff } z \in \varphi^K(\nu) \text{ and } \{\alpha | z_\alpha \in (E^\nu_\alpha)_{\eta}\} \in U.
\]

Let \(G^\nu := (W_{\nu, \eta})_{\eta < o^K(\nu)}\). \(G^\nu\) is a sequence of ultrafilters, though at the moment it is not clear that \(G^\nu\) is an extender. Note by the previous section, \(K\) has total extenders on \(\omega_3^V\), so \(o^K(\nu) < \omega_3\) for each \(\nu < \omega_3\) (since we are assuming 0-pistol does not exist; i.e. there are no overlapping extenders).

Consider any \(\nu \in D'\) and any \(X \in S^\nu\) such that there is no truncation at stage \(\theta^\nu_{\alpha^*}\) (recall this holds for \(U\)-many \(\alpha\)). Let \(\pi_X : H_X \rightarrow H_\nu\) be the inverse of the Mostowski collapsing map of \(X\). Since \(E^\nu_\alpha\) is an extender on the mouse \(N^\nu_\alpha\) and \(N^\nu_\alpha\), \(K_X\) agree below their common successor of \(cr(E^\nu_\alpha)\), then \(E^\nu_{\alpha X}\) is \(K_X\)-correct but is not on the \(K_X\) sequence; this implies:
\[
(37) \quad E^\nu_{\alpha X} \text{ is not an element of } H_X.
\]

For each \(\nu \in D'\) define a function \(s^\nu\) by:
\[
(38) \quad s^\nu(\alpha) := \text{the least } \zeta < o^K_\alpha(h_\nu(\alpha)) \text{ such that } G^\nu_{\alpha}(\zeta) \neq (E^\nu_{\alpha})_{\zeta}.
\]

By (37), \(s^\nu(\alpha)\) exists for \(U\)-many \(\alpha\) and \(s^\nu(\alpha) < h_\nu(\alpha)\) (for each \(\nu \in D'\)). Since each ultrafilter \((E^\nu_{\alpha})_{\xi}\) for \(\xi < h_\nu(\alpha) = cr(E^\nu_{\alpha})\) is simply the principal ultrafilter generated by \(\xi\), it is easy to see that \(G^\nu_{\alpha}(\xi) = (E^\nu_{\alpha})_{\xi}\) for each such \(\xi\). So \(s^\nu(\alpha) \geq h_\nu(\alpha)\). To summarize (note we have not yet used the assumption \(|\omega_2 \omega_1/U| = \omega_2\):
\[
(39) \quad h_\nu \leq_U s^\nu < U h_\nu(\kappa(\nu)) \text{ for every } \nu \in D'.
\]
Claim 30. For all but nonstationarily many \(\nu \in S^2_\omega \): \(s^\nu \) is not \(U \)-equivalent to any canonical function of the form \(h_\eta \) (for some \(\eta < \omega_3 \)).

Proof. Suppose to the contrary that there is a stationary \(R \subseteq D' \) and for each \(\nu \in R \), there is an \(\eta^\nu \) such that \(s_\nu =_U \eta^\nu \) \((- =_U \eta^\nu \) (\(- =_U \eta^\nu \)). By (39), we know \(\eta^\nu \in [\nu, \alpha^K(\nu)] \).

Consider the system \(S := \langle (\mu^\nu_-, s^\nu(-) | \nu \in R) \rangle \) of objects from the winning mouse. By Lemma 24 there is a stationary \(R'' \subseteq R \) on which \(S \) lines up. Fix a \(\nu \in R'' \cap \text{Lim}(R'') \). Then:

\[
W_{\nu, \eta^\nu} \text{ is generated by } \langle \eta^\nu' | \nu' \in R'' \cap \nu \rangle \text{ (i.e. } z \in W_{\nu, \eta^\nu} \text{ iff } z \text{ contains a tail of that sequence).} \tag{40}
\]

The proof of (40) is similar to the proof of Claim 27.1. Consider any sequence \(\langle \nu_\alpha | \delta < \omega_2 \rangle \) of points in \(R'' \cap \nu \) which is cofinal in \(\nu \). Pick any \(z \in \varphi^K(\nu) \). For each \(\alpha \) pick a \(\delta(\alpha) \) so that a thread to \((z)_\alpha \) appears by stage \(\delta(\alpha) \) (in the \(K \) vs. \(K'_\omega \) coiteration). By weak normality of \(U \) there is a \(\delta^* < \omega_2 \) and \(U \)-many \(\alpha \) such that \(\delta(\alpha) \leq \delta^* \). Then show that \(\eta^\nu \in \zeta \) for every \(\delta \in [\delta^*, \omega_2) \); the proof is almost identical to the proof of Claim 27.1. The only difference is that here we use that \(x \) is an element of \((E^\nu_\alpha)_{h^\nu^\alpha} \) if \(h^\nu^\alpha(\alpha) \in \pi^\nu_{\nu^\delta}^\nu(\alpha) \).

Since \(\nu \) and all the \(\nu_\delta \) are elements of \(R'' \) and \(S \) lines up on \(R'' \), then for each \(\delta < \omega_2 \) there is a set \(A_{\nu_\delta} \subseteq U \) such that \(\pi^\nu_{\nu^\delta}(\mu^\delta_{\alpha_\nu}, \eta^\nu_\nu) = (\mu^\delta_{\alpha_\nu}, \eta^\nu_\nu) \) for every \(\alpha \in A_{\nu_\delta} \). Also by assumption there is a set \(B_{\nu_\delta} \subseteq U \) so that \(h^\nu_{\nu^\delta}(\alpha) = s^\delta(\alpha) \) and \(h^\nu_{\nu^\delta}(\alpha) = s^\nu(\alpha) \) for every \(\alpha \in B_{\nu_\delta} \). Let \(C_\delta := A_{\nu_\delta} \cap B_{\nu_\delta} \). By Lemma 5 there are \(U \)-many \(\alpha \) such that \(I_\alpha = \{ \delta < \alpha | \alpha \in C_\delta \} \) is cofinal in \(\alpha \); let \(C \subseteq U \) be the collection of such \(\alpha \). Then for every \(\alpha \in C \): \(P_\alpha := \langle h^\nu_{\nu^\delta}(\alpha) | \delta \in I_\alpha \rangle \) is a generating sequence for the ultrafilter \((E^\nu_\alpha)_{h^\nu_{\nu^\delta}(\alpha)} \).

Now pick any \(X \triangleleft (H_\theta , \in , \Delta , ... \) such that \(t_\nu \subseteq X \) and \(\alpha = \text{Cof}(X, \omega_2) \) is an element of \(C \); this is possible because \(C \subseteq U \) and is thus stationary. By (40) and elementarity of \(\pi_X \), \(Q_X := \pi^{-1}_X(\langle \eta^\nu_{\nu^\delta} | \delta < \omega_2 \rangle) = \langle h^\nu_{\nu^\delta}(\alpha_X) | \delta < \alpha_X \rangle \) and this sequence generates the ultrafilter \(\pi^{-1}_X(W_{t_\nu, \eta^\nu}) = \langle \pi^{-1}_X(G^\nu) | h^\nu_{\nu^\delta}(\alpha_X) \rangle \).

But \(P_\alpha \) is a cofinal subset of \(Q_X \). Since \(P_\alpha \) generates \((E^\nu_\alpha)_{h^\nu_{\nu^\delta}(\alpha_X)} \) and \(Q_X \) generates \(\langle \pi^{-1}_X(G^\nu), h^\nu_{\nu^\delta}(\alpha_X) \rangle \), then these must be the same ultrafilter. But \(h^\nu_{\nu^\delta}(\alpha_X) = s^\nu(\alpha_X) \) (since \(\alpha_X \in C \)). This contradicts the definition of the function \(s^\nu \) in (38).

\[\square \]

Claim 30, along with (39), imply that many of the mice in the coiterations of this paper have extenders with at least two generators (which is a bit stronger than \(o(\kappa) = \kappa^{++} \)). To see this, pick any \(X \triangleleft (H_\theta , \in , \Delta , ... \) such that \(h^\nu(\alpha) < s^\nu(\alpha) \), where \(\alpha = \text{Cof}(X, \omega_2) \). So in
particular \((E^\nu_\alpha)_{h_\nu(\alpha)}\) is an element of \(H_X\) and if \(E^\nu_\alpha\) had no other generator, then the entire extender \(E^\nu_\alpha\) would be an element of \(H_X\), which contradicts (37).

We also point out the following fact: let \(\tau^\nu < \omega_3\) be minimal such that \(s^\nu \leq_U h_{\tau^\nu}\); by Claim 30, this inequality is in fact strict. Since \(s^\nu >_U h_\xi\) for every \(\xi < \tau^\nu\) and \(s^\nu <_U h_{\tau^\nu}\), then by Lemma 9 the cofinality of \(\tau^\nu\) must be strictly less than \(\omega_2\).

References

E-mail address: sean.cox@uni-muenster.de
NONREGULAR ULTRAFILTERS ON ω_2

Institut f"{u}r mathematische Logik und Grundlagenforschung, Universität Münster, Einsteinstrasse 62, 48149 Münster, Tel.: +49-251-83-33 790, Fax: +49-251-83-33 078